Teaching for thinking: a pedagogical schema —the pedagogical content knowledge of inquiry— ©UQCTP The University of Queenlsand Critical Thinking Project Peter Ellerton, University of Queensland ## Values of Inquiry—supporting questions ## Clarity - Are your examples useful? - · Is your argument structure clear? - · Are your diagrams easy to understand? - · Is your paragraph structure well-developed? - · Are your words well-defined and unambiguous? #### Accuracy - Is your argument sound? - Are your claims justified? - Is what you are saying true? - Have you represented ideas faithfully? - · How could people check on your claim? #### Precision - Is your attention to detail sufficient? - · Have you used technical terms appropriately? - Have you quantified your information where appropriate? - Are any bullet points categorically distinct from each other? - Have you identified areas of vagueness or ambiguity in your topic? #### Relevance - · Have you focussed on the point at issue? - Have you selected information supporting the topic? - Have you minimised distracting or unhelpful information? - Have you been able to identify why information is relevant? Have you justified why your selection of material is relevant? ## Significance - · Have you avoided superficial issues or arguments? - · Have you identified and developed your core ideas? - Has your analysis identified the most significant areas? - Have you identified the most meaningful aspects of your topic? - Has your treatment of the topic focused on substantive aspects? ## Depth - Are the complexities of the issue sufficiently described? - Have you been thorough in your treatment of the issue? - Are your analogies effective and your generalisations well-justified?Do your arguments consider premises that are themselves conclusions? - Have the problematic aspects of the issue been identified and dealt with? ### Breadth - Have you considered alternative perspectives? - Have you represented a broad range of alternative views? - Why have you preferenced one perspective over another? - Have you sought out others for the purpose of testing your ideas? - Has your breadth of treatment allowed you to synthesis a new perspective? # Coherence (Logic) - · Have you avoided using logical fallacies? - Have you avoided contradicting statements? - Are your ideas developed in a logical manner? - Do all your premises support your conclusions? - Have you used transition phrases to identify logical progressions? Values of inquiry modified from Elder, L. and R. Paul (2001). "Critical Thinking: Thinking with Concepts." Journal of Developmental Education 24(3). 2011-2016, Attribution-NonCommercial-ShareAlike 2.5 Australia (CC BY-NC-SA 2.5 AU) Peter Ellerton University of Queensland, Australia #### The Critical Thinking Matrix A high-resolution reference source for mapping critical thinking skills Peter Ellerton, University of Queensland, Australia | | y of Queensland Critical Thinking
erton, University of Queensland | | | Values o | of Inquiry | | | |------------------|--|---|---|---|--|--|---| | Cognitive Skills | | Clarity (intelligibility) | Accuracy | Precision | Depth (Complexity, relevance and significance) | Coherence | Breadth (Alternatives, perspectives, collaboration) | | | Categorising | The criteria for categorising are unambiguous and the common characteristics of elements within the category are explicitly stated. | Categorical distinctions are drawn from accurate representations or generalisations of characteristics. Hasty generalisations are avoided. | Categorical distinctions are based on quantifiable data, specific characteristics or clear logical definitions. | Categorisations are made using relevant and significant
characteristics rather than superficial resemblances.
Logical and causal relationships between categories
are identified. | Logical distinctions between categories are appropriate
and coherent. The logical relationships within and
between categories is evident. | Alternative perspectives and criteria for categorising ar
explored. Preferencing one framework over another is
justified. Potential taxonimies are considered. | | Interpretation | Decoding | Terms are disambiguated and literal and intended
meanings are distinguished when necessary, Implied
meaning and social contexts are identified. Symbolic
representations are identified and explained. | Intended or implied meaning is preserved in decoding. Literal and intended meanings are distinguished. Accurate use of symbols is evident. | Key terms are appropriately used to describe the
information content. Correct procedures for working
with quantitative or symbolic data are followed.
Symbolic representations are used effectively. | Specific information is identified and foregrounded. Meaning is preserved by maintaining logical or causal relationships. Nestery of symbolic representation includes understanding the meaning of complex operations. | The logical content of propositions, phrases or terms is made clear and placed in context. The relationships between elements are understood. | Alternative meanings resulting from other cultural or cognitive perspectives are explored. Different interpretations of the situation are considered. | | | Clarifying meaning | Key terms and technical terms are identified and
explained. Literal and intended meanings are
distinguished as necessary. Clarity is preserved as
information moves between formats. | Statements are appropriately qualified. Limitations of
understanding and representation are acknowledged.
Intended or implied meaning is preserved.
Paraphrasing and elucidation retain meaning. | Vagueness and ambiguity of terms and meaning identified. Key and technical terms identified and examined for appropriate use. | Nature and complexity of the problem understood and
represented. Analogies or relevant similarities and
illustrations used to elucidate and explain. Language
examined for 'spin'. | Logical structures identified and logical coherency determined. | Language and visualisations reflect the need to cater for a diverse audience holding alternative views, approaches or perspectives. | | Analysis | Examining ideas | Procedures of investigation are made explicit. Key concepts and structures are identified and named. Technical terms are used. | Faithful reproduction of information. Inaccuracies or contradictory information identified. Inferential relationships identified. | Detail preserved and reported. Vagueness and
ambiguity eliminated or addressed. Technical terms are
used appropriately and effectively. | Relevant and significant information is identified and foregrounded. Areas of focus are established. Problematic aspects are identified. Information necessary to frame and address the problem is identified. I deas are compared and contrasted. | Causal and logical relationships are identified. Evidence
is presented and evidential and inferential relationships
are tested. General logical structure is identified and
examined. Ideas are tested against existing
knowledge. | Ideas are analysed within a transdisciplinary or
collaborative approach, and through a variety of
perspectives, including social, political, cultural and
disciplinary. | | | Identifying arguments | Premises and conclusions are made explicit. Argument structure is identified and discussed. Inferential pathways are articulated. | Argument types and structures are identified and named. Ambiguity is identified and addressed. | Nature of evidential material made clear. Procedures
and algorithmic processes articulated in detail.
Propositional content of premises and conclusions is
identified and articulated. | The point at issue is identified. Relevant and significant information pertinent to the formation of premises is identified. Hidden premises are identified and dicussed. | Logical relationships examined to determine the nature
and form of argument. Claims are extracted from text
and evidential relationships identified. Argument is
tested for validity. | Arguments framed in various ways are recognised as
potentially representing different perspectives.
Recognition that he acceptance of evidence may
depend on personal context, experience and
perspective. | | | Argument deconstruction | Correct use of terms. Identification of key components of arguments. Supporting evidence made clear. Diagrams or mapping used to make argumentation clear. | Premises, conclusions and inferential relationships are accurately presented. | Correct use of terms, including 'valid' and 'sound'. Representations are explicit and accurate. | Problematic aspects of argument structure/complexity are explored. Relevant and significant information affecting the reasoning process is identified and its role explained. | Cogency of argument is noted. Evidential and inferential links are examined for logical consistency. Hidden premises and unstated assumptions identified. Cognitive biases identified or postulated Logical fallacies identified. | Relationships between unstated assumptions or
elements, such as beliefs, are identified, and the effect
this may have on the reasoning process is explored.
Recognising limitations of a single discipline approach
or of a single methodology. | | Evaluation | Assessing claims | Evidence is presented in context. Direct links between evidence and claims are made explicit. | Claims are faithfully reproduced. Supporting evidence is accurately represented. | Detail of claims is preserved, including quantifiable aspects. | Direct links between evidence and claims are made
explicit. Claims and conclusions are connected to the
nature of the problem and of the evidence. Cognitive
and social biases are explored. Assess the contextual
relevance of questions, information, principles, rules or
procedural directions. | Claims examined/assessed for logical coherence with each other and with evidence and methodology. | Recognising various levels of credibility that might be associated with varying perspectives about the claim. Understanding the nature of claims as a function of discipline or methodological approaches. | | | Assessing arguments | Premises, conclusions and evidential relationships are articulated. | Strengths and weakness inherent in argument types, including inductive and deductive arguments, are identified in context. | Key terms are used correctly and amounts quantified where appropriate or necessary. The tools and processes of evaluation of inferences are explicitly stated. | Suitability of evidential relationships examined with
regard to the nature of the problem. Proposed causal
and logical relationships identified and examined for
weaknesses and strengths. | Causal and logical connections tested. Inductive
arguments are analysed for strength and weakness,
including the use of analogies and generalisations.
Deductive arguments are examined for validity and
soundness. Logical fallacies identified and their effect
on the argument assessed. | Additional information that may be necessary to
strengthen the argument identified. Argument tested
using alternative standards of various disciplines or
methodological approaches. | | | Synthesising claims | The synthesis is clearly derived from the constituent claims, with links made explicit. | Intended and implied meaning is preserved and generalisations and categorisations accurately represent the constituent claims. | Similarities and differences of positions are made clear, and quantified where appropriate or necessary, including how these affect the synthesis. | Relevant and significant information retained and
highlighted in the synthesis. Inclusion and exclusion of
material in synthesis explained. Common features
identified from specific cases, both explicit and implicit. | Effective inductive generalisations made. Synthesis is coherent with the logical content of the constituent claims. Purpose and meaning are developed. | Awareness of the variety of beliefs and perspectives
that may be compatible with a particular claim.
Synthesis considered from various framings and
axioms. | | Inference | Querying evidence | Nature of evidence is clear and evidential relationships are articulated. | Evidence is faithfully reproduced and represented with honesty and charity. | Detail is sought and presented. Information is
quantified where appropriate or necessary. Exact
nature and role of evidence made clear. | Premises requiring evidential support are identified and
strategies for seeking significant and relevant
information that might inform or test hypotheses are
determined. | Logical connections between matters of fact and the point at issue or problem to be solved are made clear. Implications of evidentiary material made clear. | Inquiry encompasses or takes into account various methodologies (e.g. transdisciplinary approach). | | | Conjecturing alternatives | Possible inferential pathways (paths of reasoning)
articulated based upon varying use of evidence and
argumentation. Alternative hypothesis and potential
conclusions are clearly expressed. | Inquiry and the exploration of alternative reasoning are sensitive to maintaining the integrity of evidence and information. | Alternatives supported by calculation or other algorithmic process. | Alternative hypotheses maintain the emphasis on
significant and relevant information, as well as a focus
on solving the problem. Complexity is managed and
problematic causal and evidential relationships are
addressed across possible outcomes. | Alternatives are logically coherent with the given information and their logical implications explored. | Alternative framing of problem explored. Collaborative or multidisciplinary reasoning employed. | | | Concluding | Clear articulation of pathways from premises to conclusions, including use of evidence and argumentation. | Proper and correct use of algorithms or procedures to
arrive at conclusions. Correctly identify evidential and
inferential relationships and show how these lead to
conclusions. | Conclusions contain specific and detailed information, quantified where appropriate or necessary. | Modes of reasoning used and conclusion reached appropriate to the nature of the problem. | Logical connections between premises and
conclusions evident and explained. Inferences well-
supported. Cogent approach taken (i.e. appeal to
reason). | Conclusions reached using a variety of reasoning modes, such as mathematical, dialectic, scientific, inductive and deductive. | | Explanation | Stating results | Correct use of terminology, unambiguous use of
language and effective and clear categorical
distinctions made. Explicit representation and
explanation. | Statements, descriptions, diagrams and other representations maintain the integrity of information. | Detail preserved and presented. Information quantified.
Correct use of terms. Vagueness and ambiguity
eliminated or addressed. | Information that is significant and relevant is highlighted. Problematic aspects are outlined. | Logical connections made explicit, showing links to evidence and conclusions. Implications made clear. | Presentation of statements, descriptions, diagrams and other representations are sensitive to interpretations other than those of the author. | | | Justifying procedures | Effective use of examples and illustrations. Inferential pathways made explicit. Standards of evaluation explained and presented. | Inquiry and investigations are presented faithfully and not modified to suit the nature of the conclusions. | Process and conceptual development recorded. Calculations used to provide quantified data. | Strategies explored and evaluated. Nature of inquiry appropriate to the problem. | Methodologies, algorithms and other procedures
supported by logical analysis. Reasons given for
choosing areas of focus and minimising other
information. Standards of evaluation explained and
presented. | Evidential, conceptual, methodological, criteriological and contextual considerations are made with reference to the nature of justification as a function of alternative perspectives, beliefs and suppositions. | | | Presenting arguments | Argumentative prose, diagrams, charts, graphs and graphics convey a clear meaning, adhering to convention. Points at issue clearly defined and stated. | Evidence faithfully reproduced and counter-arguments and criticisms engaged with honesty and charity. | Quantitative data included. Unnecessary information is minimised. | Identify and address counter-arguments. Causal and
logical relationships that relate to the situation or
problem are identified and their role made explicit.
Problematic aspects identified and solutions explained. | Logical structure and coherence evident. Well-
supported inferences with implications explicitly
represented. | Cogent presentation but with due consideration of
various reasoning modes and how alternative
perspectives may influence the acceptance or definition
of evidence. | | Self regulation | Metacognition | Reflective practice is evident and cognitive development across issues is clearly reported. | Authentic representation of students' own metal processes and cognitive development. | Reflection targeted to specific processes and outcomes. | Reflections show personal engagement with significant
and relevant issues. Threshold (key) ideas and
concepts are identified. Deficiencies in personal
knowledge that may impact rational or objective
analysis acknowledged and managed. | Logical analysis of own thoughts comparable in scope and rigour to analysis of others'. | Recognition of bias, erroneous thinking or fallacious reasoning. Collaboration sought for the purpose of testing own thoughts. | | | Self-correction | Recognition of bias, erroneous thinking or fallacious reasoning is recognised and reported. | Self-criticism and redirection is authentic and resembles the criticism that would be made of third persons. | Reflection leads to specific and detailed changed or specific courses of action are articulated. | Revisions geared to improve outcomes and examined
for consequences to original position, findings, or
opinions. | Recognition and acceptance of logical errors in
preliminary thinking. Rational conclusions contrasted
with personal preferences or bias. | Willingness to modify thinking through collaborative inquiry. Self-correction seen as progress. |